Differentiation of Plant Cells During Symbiotic Nitrogen Fixation
نویسندگان
چکیده
Nitrogen-fixing symbioses between legumes and bacteria of the family Rhizobiaceae involve differentiation of both plant and bacterial cells. Differentiation of plant root cells is required to build an organ, the nodule, which can feed and accommodate a large population of bacteria under conditions conducive to nitrogen fixation. An efficient vascular system is built to connect the nodule to the root, which delivers sugars and other nutrients to the nodule and removes the products of nitrogen fixation for use in the rest of the plant. Cells in the outer cortex differentiate to form a barrier to oxygen diffusion into nodules, which helps to produce the micro-aerobic environment necessary for bacterial nitrogenase activity. Cells of the central, infected zone of nodules undergo multiple rounds of endoreduplication, which may be necessary for colonisation by rhizobia and may enable enlargement and greater metabolic activity of these cells. Infected cells of the nodule contain rhizobia within a unique plant membrane called the peribacteroid or symbiosome membrane, which separates the bacteria from the host cell cytoplasm and mediates nutrient and signal exchanges between the partners. Rhizobia also undergo differentiation during nodule development. Not surprisingly, perhaps, differentiation of each partner is dependent upon interactions with the other. High-throughput methods to assay gene transcripts, proteins, and metabolites are now being used to explore further the different aspects of plant and bacterial differentiation. In this review, we highlight recent advances in our understanding of plant cell differentiation during nodulation that have been made, at least in part, using high-throughput methods.
منابع مشابه
NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner
Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, in...
متن کاملPlant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/Sinorhizobium meliloti symbiosis.
In the Medicago truncatula/Sinorhizobium meliloti symbiosis, the plant undergoes a series of developmental changes simultaneously, creating a root nodule and allowing bacterial entry and differentiation. Our studies of plant genes reveal novel transcriptional regulation during the establishment of the symbiosis and identify molecular markers that distinguish classes of plant and bacterial symbi...
متن کاملMultiple steps control immunity during the intracellular accommodation of rhizobia
Medicago truncatula belongs to the legume family and forms symbiotic associations with nitrogen fixing bacteria, the rhizobia. During these interactions, the plants develop root nodules in which bacteria invade the plant cells and fix nitrogen for the benefit of the plant. Despite massive infection, legume nodules do not develop visible defence reactions, suggesting a special immune status of t...
متن کاملBacterial RuBisCO Is Required for Efficient Bradyrhizobium/Aeschynomene Symbiosis
Rhizobia and legume plants establish symbiotic associations resulting in the formation of organs specialized in nitrogen fixation. In such organs, termed nodules, bacteria differentiate into bacteroids which convert atmospheric nitrogen and supply the plant with organic nitrogen. As a counterpart, bacteroids receive carbon substrates from the plant. This rather simple model of metabolite exchan...
متن کاملMedicago truncatula symbiotic peptide NCR247 contributes to bacteroid differentiation through multiple mechanisms.
Symbiosis between rhizobia soil bacteria and legume plants results in the formation of root nodules where plant cells are fully packed with nitrogen fixing bacteria. In the host cells, the bacteria adapt to the intracellular environment and gain the ability for nitrogen fixation. Depending on the host plants, the symbiotic fate of bacteria can be either reversible or irreversible. In Medicago a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Comparative and Functional Genomics
دوره 3 شماره
صفحات -
تاریخ انتشار 2002